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Cherenkov Radiation Spectrum 
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A new method is proposed for the construction of the theoretical Cherenkov 
spectrum. The expression representing the spectral energy distribution has the 
same form as the classical Frank-Tamm formula, but the square of the index of 
refraction is replaced by the real part of a dielectric function, which we interpret 
as a function characteristic of the polarized medium in the immediate vicinity of 
the passing charged particle. 

1. INTRODUCTION 

Cherenkov radiation (CR) is usually treated as occurring when the 
velocity of a charged particle in a transparent medium exceeds the phase 
velocity of light in that medium, and is observed at a specific Cherenkov 
cone angle (Jelley, 1958; Zrelov, 1968). This radiation has a continuous 
spectrum, and the measured intensities in the visible region are in good 
agreement with the classical theoretical prediction (see, e.g., Collins and 
Reiling, 1938; Rich et al., 1953). The theory states that the radiation intensity 
is a linear function of the frequency (UV divergence), and the theoretical 
upper limit of the spectrum is an old open question. The quantum mechan- 
ical treatment based on the assumption that the effect takes place in a con- 
tinuous medium, whose optical properties can be expressed in terms of a 
refractive index or dielectric constant, n(c0)= [e(og)] ~/2, also leads to the 
classical result (Zrelov, 1968; Marmier and Sheldon, 1969; Ahlen, 1980). 

One of the most interesting approaches to the CR was proposed by 
Budini (1953), who used a complex dielectric function, introduced the condi- 
tion/32 Re e(co) > 1 for the formation of the CR, and obtained a modified 
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expression for the radiated energy, which reduces to the classical Frank- 
Tamm expression in the ideal case of a perfectly transparent medium 
[Im e((0) = 0]. A brief review of this theory is given below in Section 3. 

The goal of the present paper is to obtain a theoretical spectrum of the 
CR which gives decreasing intensities in the near-UV region, with predictable 
upper limit as a function of particle velocity. In Section 4 we write an 
equation for the threshold velocity by using the above inequality with an 
entirely different physical meaning, and we plot a spectrum with an 
expression in which Re e((0) is used instead of n2(co) in the classical formula. 
This expression is derived in Section 5. Final remarks are made in Section 
6. Some general properties of the dielectric function are reviewed in the 
Appendix. In the beginning the classical theory of Frank and Tamm is 
summarized. 

2. CLASSICAL THEORY 

The theoretical discussion of CR is found in reviews on the Cherenkov 
effect and its application (Jelley, 1958; Zrelov, 1968), or in textbooks on 
electromagnetic theory (e.g., Landau and Lifshitz, 1960; Jackson, 1975) and 
quantum mechanics (e.g., Schiff, 1955). A beautiful review of the classical 
and quantum theory, with applications in particle detection methods 
(Cherenkov detectors), can be found in the book of Marmier and Sheldon 
(1969). 

In the classical investigations the Cherenkov effect is treated as the 
radiation produced by an electron passing through a nonmagnetic (p = 1) 
medium of dielectric constant e((0) {or refractive index n(ro)= [e((0)]l/2}. 
The radiated energy per unit path length is given by the Frank-Tamm 
formula 

<e f( 1 ) 
dx c 2 1 fl2n~((0) (0do (1) 

where e is the electron charge, fl = v/c (v is the electron velocity, c is the 
velocity of light in vacuum), 09 is the frequency of the emitted light, 
and the integral has to be calculated over frequencies with respect to which 
the following inequality holds: 

fln(~) > 1 (2) 

The index of refraction is usually taken to be 

n2((0) = 1 q.. a (3) 
(002 --  (02 

(Jelley, 1958; Zrelov, 1968; Jackson, 1975), where a=4~Ne2/m, N repre- 
sents the number of atoms per unit volume, (0o is the eigenfrequency of 
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atomic oscillators, and m is the electron mass. Note that from the inequality 
(2), by using equation (3), the upper limit of the integral in equation (1) 
can be COo, but the most essential and experimentally well-established feature 
of CR, namely the existence of a threshold velocity (flthr = 1/n, if n is taken 
as a constant) below which there is no radiation, is disturbed. 

Equation (1) gives not only the radiated energy, but also the spectral 
distribution of the emitted radiation. Experiments have shown good agree- 
ment with the prediction of equation (1) in the visible part of the spectrum, 
but in the ultraviolet region the measurements indicate decreasing intensities 
[for a review see Zrelov (1968)]. As pointed out by Collins and Reiling 
(1938), "It would be expected, however, that at very short wave-lengths a 
determination of the intensity would result in a deviation from the classical 
theory in much the same way that the classical theory of Rayleigh-Jeans 
fails at short wave-lengths." 

3. THE THEORY OF BUDINI 

Starting from the problem of the energy lost by a relativistic particle in 
a polarizable medium, Budini (1953) showed that for the calculation of the 
energy lost by excitation, ionization, and CR it is necessary to take into 
account the damping constant of the bound electrons of the medium. The 
following equation was proposed by Budini for the calculation of the energy 
lost by CR: 

d x - c  2 exp - fl2pime(co) 1 -  Res(co) /code. (4) 
=(co) I 

where the integration limits are defined by the inequality 

f12 Re e(co) > 1 (5) 

Re e(co) and Im e((9) represent, respectively, the real and the imaginary 
parts of the dielectric function e(co), expressed as 

A e(co) = 1 + 4zoNe2 i oz (6) 
m k=l co~- -igkco 

in which fk, cok, and gk are the oscillator strength, frequency, and damping 
constant of the kth absorption limit. 

According to Budini, the spectral distribution of the CR can be calcula- 
ted by use of equations (4) and (5), taking into account the geometrical 
characteristics of the applied apparatus (p denotes the distance from the 
particle track), and taking into account the dispersion [Re e(co)] and absorp- 
tion [Im e(co)] characteristics of the medium within which the radiation is 
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generated. The inequality (5) is taken as the condition for the formation of 
CR; the condition for the CR of a given frequency to be observed at a 
distance p from the track axis is considered to be fi2(CO/v) Im e(CO) p<< 1. 
Equation (4) reduces to the classical equation (1) in the case of zero damping 
(gk = 0), i.e., in the ideal case of a perfectly transparent medium without 
absorption Jim e(CO) = 0]. 

Although this model is very attractive and seems to be a realistic descrip- 
tion of CR (the UV divergence in principle is avoided), to recover the 
threshold velocity and the conical character of radiation (expressed as 
cos 0 = 1~fin, where 0 is the emission angle), and also to plot the spectrum 
of CR, from Budini's theory we will exploit only the condition (5). 

4. AN EQUATION FOR THRESHOLD VELOCITY 
AND SPECTRUM CALCULATION 

In the most simple terms, the production of CR is usually explained as 
follows. The atoms of a dielectric medium in the immediate vicinity of a 
passing charged particle are distorted by the electric field of the latter into 
an elongated shape with a nonhomogeneous charge distribution, so they 
behave as electric dipoles. This polarization is clearly visualized in Figure 1 
of Jelley's (1958) book (see also Marmier and Sheldon, 1969). For a slow 
particle the polarization is symmetrical, hence no electromagnetic radiation 
is emitted, and for a fast particle with a velocity from a threshold value there 
results an asymmetrical polarization, giving rise to a resultant dipole field 
and the emission of CR. If the local polarization vector P(r, t) at the point 
r = vt satisfies the equation 

d2P + g d P  Ne2 E 
dt 2 ~ + co~e =fo m 

(E is the electric field at r = vt, g is the coefficient of the friction force, f0 is 
the oscillator strength coefficient, and COo is the atomic eigenfrequency 
without the perturbation), then the Fourier components E~o and P~o with 
time dependence exp(-iCOt) satisfy the equality 

Ne 2 fo 

m co~ - co z - igco 

The electric induction D~o = E~o + 4rcPo~ becomes 

Do,=(l+4rcNe2 mf~ ) 
m co~- - igco  Eco 
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or in a familiar form Do, = e(co)Eo~. The e(co) satisfies the conditions 
described in the Appendix; it differs from the expression (6), but for small 
frequencies the description of the dielectric properties with dispersion oscilla- 
tors of one frequency only is a sufficiently good approximation. In practice, 
for the index of refraction, in general one assumes the form of equation (3) ; 
e.g., for a Pilot 425 Cherenkov radiator (Ahlen et al., 1976) 

a =  1.931 • 1032/sec2 and co2=4.044 x 1032/sec2 

By the above picture of the CR phenomenon, it makes sense to attempt 
to connect the threshold velocity for the formation of CR to the polarization 
in the particle's vicinity. 

A simple calculation show that Re e(co) has a maximum at 
cozu= coo:-gcoo. It can be seen that the inequality (5) is satisfied if 1/fl 2 is 
smaller than the maximum value Re e(coM), so Re e(co~vt) can be related to 
the threshold velocity by 

ao 1 
1 -~ - ( 7 )  

2gco0-g 2 flt~r 

where we introduce the notation ao = 4rcNe2fo/m. 
If  we take J~ ~ 1 and the atomic density and eigenfrequency are known 

by assuming flthr as an experimental datum, then from equation (7) we can 
calculate the damping constant. As the threshold velocity ratio approaches 
unity, the order of magnitude of g has the order of magnitude of COo; in 
other words, in the resonance process the lifetime of an "elongated atom" 
is about COo I sec. If  it is assumed that for small frequencies, including the 
visible part, the square of the index of refraction as given in equation (3) 
equals Re e(co), then the constant ao may be calculated, too. 

As an example, let us consider the CR to be produced in water with 
flthr=0.75, n~1.33 in the visible region, and co0=6x 1015sec -1 (Jelley, 
1958). Then we get the solutions (a) g ~ 4  x 10 ~5 sec -1, a0~24 x 103o sec -2, 
and (b) g ~ 5  x l015 sec -1, ao~27 x 103o sec -2. The Re e(co) corresponding 
to the solution (a) is shown in Figure 1. 

The radiated energy will be derived in the next section, with a method 
which allows us to interpret the resulting expression as the energy lost by 
the particle in its immediate vicinity, and then radiated by the mechanism 
described above. Note that in a derivation of equation (1), Nag and Sayied 
(1956) pointed out that the effect of  absorption is eliminated, and the real 
emitted radiation is obtained. We consider the emitted radiation intensity to 
be a real observable quantity in a perfectly transparent medium with the 
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Fig. 1. Plot of Re e(co) 
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index of refraction (3). The spectral energy distribution is written as 

1 09 I(f~ = c~ " ( f12 Re e(a))) (8) 

If  we choose fl =0.8 in the preceding example, we get the spectrum as in 
Figure 2. Note that the solution (b) gives in fact a curve with the same 
aspect. 

5. IONIZATION AND CHERENKOV RADIATION 

The ionization energy loss by a fast-moving charged particle in matter 
is affected by the polarization of the medium (density effect). Fermi (1940) 
discussed the density effect in detail based on classical electrodynamics. The 
amount of energy loss by the particle at distances greater than a certain 
minimum distance b from the path of the particle (b larger than the inter- 
atomic distances) was calculated as the flux of the Poynting vector across a 
cylindrical surface of radius b, having the path of the particle as axis, Fermi 
found that the ionization loss reached a plateau value at very high energy. 
The theoretical and experimental aspects of the density effect were reviewed 
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Fig. 2. Theoretical Cherenkov spectrum of radiation induced in water (n = 1.33, flthr= 0.75). 
The velocity ratio is taken to be fl = 0.8. 

by Crispin and Fowler (1970) and later by Ahlen (1980). The discussion of the 
classical density effect can also be found in the book of Landau and Lifshitz 
(1960). Their approach is called semiclassical (Ahlen, 1980) because the dis- 
tant collisions are treated from the point of view of classical electrodynamics, 
but it is possible to interpret the vector k which appears in the Fourier trans- 
form of the fields as the wave vector of an exchanged photon. According to 
Landau and Lifshitz, one calculates the work done by the particle against the 
electric field it generates to express the energy loss by CR, too. 

For completeness, we repeat the derivation of the general expression of 
the energy loss [equation (11) below] following Landau and Lifshitz (1960), 
including the convenient evaluation of the radiated power density by the 
method of Bornatici and Spada (1989). 

Taking into account the relation (A2) of the Appendix, the Maxwell 
equations are written as 

ro tH=_l  ~ E  47: - - - 4 - - -  j 
c 0t c 

1 ~ H  
rot E -  

c Ot 

div ~E = 47rp 
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div H = 0 

where the field is produced by a pointlike source of charge e, moving along 
the x axis. Then the charge density and the current density can be expressed 
as  

p=e 8 ( r - v t )  and j = e v  5 ( r - v t )  

The electromagnetic potentials A and q~ are introduced in the usual manner, 

H = rot A 

1 0A 
E = - grad q~- -  - -  

c Ot 

By imposing the "generalized" Lorentz condition 

d i v A +  10~(P= 0 
c ~t 

from the Maxwell equations it follows that 

~2A 47r 
. . . . . .  ev 5(r - vt) (9a) V2A c 2 6~t 2 c 

~ ]  - 4 g e  5(r -vt )  (9b) 

Taking the Fourier developments of the potentials 

A = Ak exp(ik �9 r) d3k, q~= q~k exp(ik �9 r) d3k 
- - ~ 3  ct3 

we have for equations (9) the form 

k2Ak_~ ~ O2Ak_ ev 
c2 0t 2 27r2 c e x p ( - i k ,  vt) (10a) 

( ,~ a2~o~_ e 
~ k~q,,~ + ~ - j / -  ~ exp(-ik �9 ,,t) (aOb) 

As can be seen, the Fourier components are dependent on time through the 
factor e xp ( - i k  �9 vt). Introducing the notation 

co = k .  v=kxv 
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from equations (10) we have 

A k  --  e v e- i t~ 
2z2c k 2- 0)2e(0))/c 2 

and 

e 1 e-lOot 
~ok- 2z2 s.(0)) k2 _ 0)2t;.(0))/C 2 

The Fourier components of the field are 

Ek = tO) Ak-- ikCpk 
c 

Hk = ik x Ak 

and the electric field is 

E ( r , t ) = - - i e  f~ (0)~2 ~) )  
2Z2 oc e 

1 exp[i(k �9 r -  cot)] d3k 
x k ~ -  0)2e(0))/c~ 

The work (or the power density) done by the current against the electric 
field it generates can be obtained as 

dW_ f ~  dt j(r, t)" E(r, t) d3r = - ev" E(vt, t) 
- - o f )  

(Bornatici and Spada, 1989). 
On introducing cylindrical coordinates (q, kx, ~ ) ,  with q2 = k 2 + k 2, and 

replacing dky dk~ by 2zq dq, we have that the energy loss by the particle per 
unit path length (F=  dW/dx) takes the form 

F=ie2 f f  ~ [1/e(co)v2-1/c2]0)q 
Z dd -o~ q2+ 0)211/O2 o~(0))/C 2] dq do) (11) 

In the evaluation of the ionization energy loss the variable q is taken as 
real, and the integration in equation (11) is carried out from 0 to qo; hqo 
may be interpreted as the maximum momentum transfer. 
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Now we give the results of Landau and Lifshitz (1960), without repeat- 
ing the derivations. If/)2< c2/eo, where e0 = e(0), the expression for ioniza- 
tion energy loss is 

F(qo) = ~ In qov + I_ In 
cO 2 1 

(12) 

(CO is the average atomic frequency), and when 1)2> C2/eO or v ~ c we have 
the plateau 

F(qo) 2~rNe4" mc2q~ 
- mc 2 m ~ (13) 

These equations are very similar to equations (30) and (31) in Fermi (1940). 
It should be noted, however, that equations (30) and (31) in Fermi's paper 
are valid in the case of negligible damping and equations (12) and (13) here 
can be regarded as the energy loss expressions calculated with zero damping, 
too. 

The starting point in the evaluation of the integrals of equation (11) is 
the observation that the equation 

602 1 
q2=~- [ e ( t o ) - ~  1 (14) 

has only one root for q2> 0, and this root is on the imaginary axis of to 
(Landau and Lifshitz, 1960). It can be seen that a root to = ito" must satisfy 
the condition e(ito")< l / f l  2, which should hold for arbitrary/3, taking into 
account the properties of e(to) [see the Appendix, point (c)]. 

Let us assume now that equation (14) holds for 

1 
e(ito") >fl-5 (15) 

and we take from the beginning q as a complex variable. The integration 
over to is carried out for frequencies for which e(to) is real (i.e., for pure 
imaginary to), and the condition (15) is satisfied. Then we have from 
equation (11) 

dx -c 2 ~i fl2~.(~.to,,) (ito") d(ito") 

x f  2__qdq 
Jc q2 + a 2 (16) 
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Fig. 3. Contour of integration in the q plane. 

where we used the notation 

a2 =(co")2 

and the contour of integration C is presented in Figure 3. Then 

1 f d ( q  z+a 2) dq =1 
~ i J c dq q2 + a 2 

Taking into account the relation (A5) in the Appendix, e(ico") may be 
replaced by Re E(ico"), and to get a physical result, the complex variable is 
changed back into a real one. Then equation (16) can be rewritten in the 
form 

dx c ~ J \  Re  e(co) co dco (17) 

with the integration limits determined by the inequality (15) after the above 
replacements, i.e., 

t2 Re e(co) > 1 (18) 

We interpret equation (17) as the energy absorbed by the atoms in the 
vicinity of the particle and then radiated in the form of observable CR if the 
inequality (18) is fulfilled. 

The angle of emission of the radiation can be obtained from the relation 
cos 0 = kx/k, where kx = co~v, and k = co/c' (c' is the velocity of the emitted 
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light in the medium). Introducing the refractive index as n(co) = c/c'(co), we 
recover the classical relation 

1 
cos 0 ( c o ) = - -  

/~n(co) 

which defines the cones of angular aperture 0(co) (Jelley, 1958; Zrelov, 
1968). In the limit of vanishingly small absorption, using the dispersion 
relation (3), and Re e(co) from the preceding section, it is obvious that the 
inequality fin(co)> 1 is a natural consequence of the inequality (18). This 
can be seen easily from the example of Figure 1. 

6. CONCLUDING REMARKS 

The energy loss of a pointlike charged particle by ionization and CR 
has been evaluated by means of the Fourier transform method. It has been 
shown that in the CR process the polarization in the immediate vicinity of 
the passing particle can be described with a damping constant which has the 
magnitude of the atomic eigenfrequency, as results from equation (7). In 
this way it is possible to avoid the UV divergent spectrum by the use of 
equation (17). The angle of emission of CR remains the same as in the 
classical theory, but the usual inequality (2) of CR theory appears to be a 
consequence of the inequality (18), and the light intensity at angle 0(co) is 
given by equation (8). 

A quantum electrodynamic discussion of the ionization and CR, based 
on the electron self-energy (mass operator) method, will be given in a later 
paper. 

APPENDIX 

In this Appendix we give a short review of the dispersion properties of 
the dielectric function, following Landau and Lifshitz (1960). 

In a continuous isotropic medium the most general relation between 
the electric induction D(t) and the field E(t) can be written as 

fo D(t) = E(t) + f ( z ) E ( t -  r) dr (A1) 

where f ( r )  is a function of time and depends on the medium's properties. 
In the range of integration,f (r) < ~ .  Equation (A1) can be put in the form 

D(t) = ~E(t) (A2) 

where ~ denotes a linear integral operator. 
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If the Fourier components of the quantities D(t) and E(t) depend on 
time through the factor exp(-io2t), then equation (A2) becomes 

D~ = e(o2)Eo, (A3) 

where e(cg) is a function given by the equation 

fo e(o2) = 1 + f ( r )  e i~ dr  (A4) 

which can be written by separating the real and the imaginary parts as 

e(o2) = Re e(o2) + i Im e(o2) 

By taking o2 as complex variable, o2 = o2'+ io2", we establish the following 
properties of the function e(o2) : 

(a) e(o2) is defined in the upper half-plane of o2. If co" < 0, the integral 
in equation (A4) is divergent. 

(b) e(o2) is a real function only for pure imaginary co. As can be 
seen from equation (A4), e(io2")= e*(io2") (the asterisk denotes complex 
conjugation), i.e., 

e(io2") = Re e(io2") (A5) 

(c) On the imaginary axis e(o2) is monotonically decreasing from the 
value e(iO)> 1 to t(ioo)= 1. 

(d) The real part and the imaginary part of e(o2) are related by the 
Kramers-Kronig dispersion relations, 

1 [ '~  Im e(o2) 
Re e(o2) = 1 + -  P dx  

J _  ~ X--O2 

Im e(o2) = - - 1  P ~ oo Re e(o2) - 1 dx 

' J  -o~ X--(.0 

where x and co are real variables, and P means principal part. 
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